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Information capacity of a hierarchical neural network

David Renato Carreta Dominguez*
Instituut voor Theoretische Fysica, Katholieke Universeteit Leuven, Celestijnenlaan, B-3001 Leuven, Belgium

~Received 8 June 1998!

The information conveyed by a hierarchical attractor neural network is examined. The network ‘‘learns’’
sets of correlated patterns~the examples! in the lowest level of the hierarchical tree and can categorize them at
the upper levels. A way to measure the nonextensive information content of the examples is formulated.
Curves showing the transition from a large retrieval information to a large categorization information behavior,
when the number of examples increase, are displayed. The conditions for the maximal information are given as
functions of the correlation between examples and the load of concepts. Numerical simulations support the
analytical results.@S1063-651X~98!06110-8#

PACS number~s!: 87.10.1e, 64.60.Cn, 02.50.2r
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I. INTRODUCTION

In the context of learning rules by perceptrons, gener
zation by a neural network is the capability of correctly cla
sifying patterns after some examples are ‘‘taught’’ to t
network ~see, e.g., Ref.@1#!. For attractor neural networks
another type of generalization was suggested, the catego
tion, that emerges from an encoding stage where a hiera
cal tree of patterns is stored@2#. The ability of the network to
classify the patterns on a lower level of the tree~i.e., the
examples! into categories defined by their ancestors~i.e., the
concepts!, arises from the Hopfield model if the examples a
correlated with their concepts@3#.

A minimal numberS of examples for each concept
necessary to start the categorization. An extensive numbe
concepts is then ‘‘learned’’ by memorizing finite sets of e
amples. This was shown for networks of binary neurons w
fully connected@4,5#, diluted@6#, or layered@7# architectures,
and for analog@8#, ternary@9#, and nonmonotonic@10# neu-
rons, using Hebbian synapses. A similar behavior was fo
for pseudoinverse synapses@11#. Categorization is achieve
through the appearance of symmetric spurious states.
ability to categorize starts just when the capacity of the n
work recovering the original examples is lost, because of
interference generated by their correlations.

As in most models for pattern recognition, an adequ
analysis of the memory capacity of this network requires
tools of information theory. In the case of nonbiased ind
pendent patterns, one can avoid it and measure the pe
mance through the Hamming distanceD between the neuron
and the retrieved pattern, and the load capacitya. One sce-
nario, whereD and a are not enough to characterize th
system, is that of sparse coded patterns@12#. Another is that
of dependent patterns. This is the case for categoriza
models, since the information conveyed by the example
not extensive in them.

Our goal in this work is to establish a reliable measure
the capacity of retrieving examples, and their categorizat
based in the information theory. In Sec. II, we define t
model and its parameters. After obtaining expressions for
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information capacity in Sec. III, in Sec. IV we study som
special cases which present the transition from a retrie
phase to a categorization phase. Finally we conclude w
some remarks in Sec. V.

II. MODEL

Consider a network ofN binary neurons, with state
$s i ,tP61% i 51

N at time t. The neurons states are updated
parallel according to the deterministic rule

s i ,t115sgn~hi ,t!, hi ,t5 (
i ~Þ j !

N

Ji j s j t , ~1!

wherehi ,t is the local field of neuroni at time t. The ele-
ments of the Hebbian-like synaptic matrix between neuroni
and j are given by

Ji j 5
1

N (
m

p

(
r

S

h i
mrh j

mr , ~2!

where $h i
mr%r51

S are theexamplesof the conceptj i
m . The

concepts are independent identically distributed random v
ables~IIDRV’s !, $j i

m561% i 51
p , with equal probability.

In the encoding stage, the examples are built from
concepts, according to the stochastic process

p~h i
mruj i

m!5bd~h i
mr2j i

m!1~12b!d~ uh i
mru221!, ~3!

whereb5^h i
mrj i

m& gives the correlation between the ance
tors~the concepts! and the descendants~the examples! of this
tree of patterns. The secondd of this conditional distribution
gives the component of the examples which is independ
on the concepts. This process can equivalently be formula
ash i

mr5j i
ml i

mr , where thebiasedIIDRV’s l i
mr are distrib-

uted according to

pB~l i
mr!5B1d~l i

mr21!1B2d~l i
mr11!, ~4!

with B65(16b)/2.
The macroscopic parameters which describe the stat

the network are theretrieval and categorization overlaps,
respectively:
4811 © 1998 The American Physical Society
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mNt
mr[

1

N (
j

h j
mrs j t ,MNt

m [
1

N (
j

j j
ms j t . ~5!

In the thermodynamic limit, the qualities of the retrieval a
of the categorization can be measured by taking the limN
→` of the overlaps for a single concept, saym51, which
give

mt
1r[^h1rsgn@ht21#&, Mt

1[^j1sgn@ht21#&, ~6!

where the brackets mean averages over the set of exam
h1r and the local fieldht21 for a single neuron.

The generalization error @1,3# can be defined asEt
1

[^us t2j1u2&512Mt
1 , as a function of the categorizatio

overlap. The stationary states are given by macroscopic o
laps with examples of a given concept, saym`

1r[m1r, and
microscopic remaining overlapsn.1 andmnr;1/AN. The
general solution is represented by a retrieval overlap wit
single example, saym11[m, and thequasisymmetricover-
laps with the other examples,m1r[mS and r.1. In the
retrieval phase one hasm;1 andmS;b2, while in the cat-
egorization phase the stable state ism5mS;b, which may
lead to a large categorization overlapM`

1 [M;1. In the
following we will consider a situation where the netwo
relaxes to equilibrium states, so we can drop the timet on the
parameters.

III. INFORMATION CAPACITIES

In this section we describe a way to measure the stor
of information by the network in the retrieving and cat
gorizing regimes. There are two types of informati
to be extracted from the patterns in these networks: retrie
information and categorization information. The form
is that which can be conveyed from the examples to
neurons, while the latter is that which can be convey
from the concepts. In each case one must calculate
information entropy of the pattern distribution
H@$j i

m% i ,m
N,p#52($j i

m%p($j i
m%)ln@p($ji

m%)#, and H@$h i
mr% i ,m,r

N,p,S#

52($h i
mr%p($h i

mr%)ln@p($hi
mr%)#, where p($j i

m%) and

p($h i
mr%) are the concepts and examples joint probabi

distributions, respectively.
The categorization information can be easily measured

computing the categorization overlap of a single concept,M ,
and its entropy. Since the concepts$j i

m% i ,m
N,p are IIDRV’s,

their probability distribution is factorial, p($j i
m% i ,m

N,p)
5) i ,m

N,pp(j i
m). Thus the entropy of the concepts is extensi

H@$j i
m% i ,m

N,p#5(m,i
p,NH@j i

m#5pNH@j#, where the entropy of a
single concept on a single neuron isH@j#5 log2(2). As we
study binary patterns, we shall use base-2 logarithm in o
to count information in bits, then we haveH@j#51. The
equivocation in the categorization can be evaluated by
square of the overlap, in such a way that no information
transmitted by the concepts ifM50 and the information is
maximal if M561, showing that the information is sym
metric in this overlap, because an inverted concepts i
52j i carries the same information thans i5j i . Therefore,
the total categorization information isI C5pNM2H@j#, and
the categorization information~per synapse! is
les

r-

a

ge

al

e
d
he

y

,

er

e
s

i C5aM2. ~7!

The retrieval information can be similarly measured,
computing the retrieval overlap and the entropy of the
amples, since this entropy can also be factorized
p($h i

mr% i ,m,r
N,p,S)5) i ,m

N,pp($h i
mr%r

S), such that the entropy is ex
tensive in the concepts and in the neurons,H@$h i

mr% i ,m,r
N,p,S#

5(m,i
p,NH@$h i

mr%r
S#5pNH@$hr%r

S#. Thus it is enough to cal-
culate the entropy of a set of examples of a single conc
$hr%r

S[$h i
mr%r

S , on a single neuron, to obtain the entropy
the whole set$h i

mr% i ,m,r
N,p,S .

On the other hand,$hr%r
S is not a set of IIDRV’s, so

p($hr%r
S) is not factorizable in example probabilities, and th

entropy is not extensive in the examples,H@$hr%r
S#

Þ(r
SH@hr#. So the retrieval information is not the naiv

one, i RÞaS.
Let $hr%[$hr%r

S be a set of examples of a given conce
on a given neuron. In calculatingp($hr%) we proceed as
follows: we take the conditional probability of the exampl
given the concept,p($hr%uj), from Eq. ~3!, and average it
on the distribution ofj,

p~$hr%!5^p~$hr%uj!&j5 )
r51

S
pB~hr!1pB~2hr!

2
, ~8!

wherepB is the probability distribution in Eq.~4!. After ex-
panding this product, we calculated the entropy of this d
tribution, obtaining

H@$hr%#52 (
k50

S

Ck
SAkln~Ak!,

~9!
Ak5@B1

k B2
S2k1B2

k B1
S2k#/2,

whereCk
S are the combinatorial numbers.

In evaluating the equivocation in the retrieval, here w
have to multiply this entropy by the square of the retriev
overlap of a single example. Since we have to subtract
information due to the categorization, and the overlaps
tween examples and their concepts areb5^hrj&, we esti-
mate the total retrieval information asI R5pN(m
2bM)2H@$hr%#. Therefore the retrieval information~per
synapse! is

i R5a~m2bM!2H@$hr%#. ~10!

Although other measures for the information could
used, they must be monotonous functions of those we c
sider in the Eqs.~7! and ~10!. Nevertheless, these have th
advantage that both are equivalently scaled, and they ca
directly compared to each other.

IV. RESULTS

We now present the equilibrium states for the netwo
which are used to obtain the retrieval and categorization
formation. These states are studied for two systems:
asymptotic network (N→`), for which analytical stationary
equations were derived@3#, and finite-sized systems, fo
which simulations of the dynamics in Eq.~1! are carried on.
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While the information measures obtained in Sec. III are fu
tions of asymptotic parametersM and m, the results from
simulation use the overlaps in Eqs.~5!.

A. Asymptotic network

First we study the stationary states of the overlaps in E
~5!, in the thermodynamic limitN→`. Using the Hebbian
synapses in Eq.~2! in the dynamics in Eq.~1!, taking the
local field at the fixed point, and averaging over the distrib
tion of a single example, one obtains

m5 (
k50

S21

pS~k!E
2`

`

Dz@B1G12B2G2#,

M5 (
k50

S21

pS~k!E
2`

`

Dz@B1G11B2G2#, ~11!

mS5 (
k50

S21

pS~k!
xS

S21E2`

`

Dz@B1G11B2G2#,

for the retrieval, categorization, and quasisymmetric over
respectively. Here

G65sgn@xSmS6m1zAar #, ~12!

with xS[(r52
S lr[2k2(S21). and the averages are ov

the remainingS21 examples from the first concept, and t
remainingp21 concepts. The first is the binomial variab
xS52k2(S21), distributed according to

pS~k!5Ck
S21B1

k B2
S212k ; ~13!

the last is a Gaussian noise, distributed according to

Dz5
dz

A2p
e2 z2/2. ~14!

In the present case of a fully connected network, there
strong feedback in the dynamics, but an expression for
variance of the noise can be obtained using a replica s
metric approach@3,5#,

r 5s
@12C~12b2!~12b21sb2!#21~s21!b4

@12C~12b2!#2@12C~12b21sb2!#2
, ~15!

with

C5
1

Aar
(
k50

S21

pS~k!E
2`

`

Dz z@B1G11B2G2#. ~16!

We have to solve Eqs.~11!–~16!, then introduce the over
laps in the expressions for the information@Eqs. ~7! and
~10!#. These analytical results for the information are th
presented in comparison with the results from simulation

B. Simulation

The simulations we have performed are for networks
N55000 and 104 neurons, which are updated in parallel a
cording to the dynamics in Eq.~1!, up tot510 time steps, or
-

s.

-

p,

a
e
-

n

f
-

when the overlaps converge. Thus we havealmoststationary
states in most cases, except when a state of noninformati
obtained, for which the times of convergence are typica
much larger.

The capacity is analyzed as a function of the two para
eters of loading of the network: the rate of loading of co
cepts,a5p/N, and the number of examples per concept,S.
The sample averages are taken over an interval in ln(S) or in
a. When simulating the information as a function ofS, we
first generate the concepts and then consecutively store
examples of each concept. When simulating the informat
as a function ofa, we generate theS examples of the con-
cept generated at each step of the learning.

The network is trained then storing examples, while t
retrieval and categorization overlaps are monotorized. Fo
fixed a, it is expected that on increasingS the network
passes from a regime where the retrieving information
large to another where the categorizing information increa
up to saturation in a upper bound. This behavior is seen
Fig. 1, where the overlaps, as well as the information,
plotted as a function of ln(S), with a correlationb50.3, for a
loading of conceptsa50.01. When more and more ex
amples are learned, the retrieval information increases un
maximum atSR57; then it falls down. After a while, when
no information is transmitted, the network reaches, atSC
;33, the categorization phase, where the categorization
formation jumps to a higher value. It continues to increa
until it saturates ati C50.01, when the network reachesM
;1 after S;90. The retrieval information capacity of th
network is i R;0.06. The asymptotic theory forN→` fits
quite well the simulation forN5104, except in the region of
no information. This is due to the finite number of steps us
in the dynamical simulation,t510, while the convergence to
the fixed point there is very slow.

FIG. 1. The overlaps~top! and information~bottom! as func-
tions of ln(S), for b50.3 anda50.01. The squares~circles! are the
simulation results for retrieval~categorization! for N5104 and t
510; the dashed~solid! curves are the asymptotic results.
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A case with a larger load of concepts,a50.04, is plotted
in Fig. 2. Although now the network can only retrieve we
examples up toS53 well, it hasi R;0.10. Then there is a
large waiting period where the information stays close
zero, up toSC;74, when the categorization informatio
jumps toi C;0.04, which is much larger than in the casea
50.01.

Comparing this with a network with a larger correlatio
b50.4, plotted in Fig. 3, we observe that the network c
store only SR52 examples with a larger overlap, with
maximal retrieval informationi R;0.05, which is somewha
smaller than the naiveSa;0.08. However, the categoriza
tion information approaches its saturation valuei C;0.04
much faster; onlyS;30 examples must be learned. We ha

FIG. 2. Same as Fig. 1, forb50.3 anda50.04.

FIG. 3. Same as Fig. 1, forb50.4 anda50.04.
o

n

checked that for a larger load of concepts (a>0.06) the
categorization information is larger than the retrieval info
mation. Also we verified that for higher correlations (b
>0.6) the categorization information can be the larger o
even for a small loada;0.01, while for smaller correlations
(b<0.2) the retrieval information is always the larger one

For a fixedS, one expects that on increasinga the cat-
egorization information~if b or S are large enough! increases
up to a maximum value, after which it decreases unti
becomes zero at a criticala. This behavior can be seen i
Fig. 4, where the case whenb50.2 andS5170 is plotted.
We verified that the larger the values ofb, the higher the
maxima of i C , and less examples are needed. We also
served that the retrieval information has a similar nonmo
tonic behavior ifb or S are small.

V. CONCLUSION

The information conveyed by the categorization mod
was studied. It was shown that the transition from the
trieval phase to the categorization phase causes a trans
in the information: the retrieval information decreases wh
the network is oversaturated with examples, and, after a
riod of resting, the categorization information increases.

It is interesting to note that, although neither the retrie
nor the categorization information surpasses the us
Hopfield model (S51, b51), which is i R;0.13 at a
50.135, the fact that the network can return to behave a
associative memory after a long period ofresting between
SR,S,SC is an advantage with respect to Hopfield ne
work. It is also worthy of note that the retrieval informatio
can still be relatively large, as we see in Fig. 2, a quotat
which to our knowledge has not been observed before in
work about the categorization model in the literature.

The simulation results fit very well with the theoretic
results in both retrieval and categorization regimes, show
that almost no effect of finite size is present, but the time
convergence in the resting period must be much larger t

FIG. 4. The categorization information as a function ofa, for
b50.2 and S5170. Asymptotitc ~solid!, and simulation forN
55000 ~dashed!.
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that used in this work. Both expressions for the informat
about the retrieval and the categorization in Eqs.~10!–~17!
are not claimed to be exact. They are approximations fo
more precise measure, themutual information@13# between
neuron and patterns,I@s,j#5H@j#2^H@suj#&j , where
H@suj# is the conditional entropy. Since we know that t
conditional probability of the neuron, given the conce
state, isp(suj)5(11Msj)d(usu221), we can replace the
categorization information by

I@s,j#5
11M

2
ln~11M !1

12M

2
ln~12M !. ~17!

This quantity gives the degree of information the neuron
E

n

a

t

n

‘‘catch’’ from the concept. However we prefer to use th
estimation in Eq.~7! to compare with the retrieval informa
tion with the same precision.

Finally, we hope that the present approach to the inform
tion content of a neural network of correlated patterns can
used in the context of more general architectures and le
ing rules. A more general distribution of thel i

mr @14# may
also deserve some attention.
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